1 Gaussian Elimination

1.1 Concepts

1. In order to solve a system of equations to find the solution or determine if there are zero or infinitely many solutions, use Gaussian elimination on the augmented matrix, a matrix formed by appending the answer vector to the original matrix. A system of equations is consistent if there is at least one solution and inconsistent if there are no solutions.

1.2 Problems

2. True False As soon as we see a row like ($000 \ldots 0 \mid 0$) during Gaussian elimination, we know that the system will have infinitely many solutions.
3. True False If we see a row like $(000 \ldots 0 \mid 0)$ then we know the determinant of the matrix.
4. Use Gaussian elimination on the following augmented matrix. Write the equations these correspond to.

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -1 & -1 & 2 \\
-3 & 0 & -2 & -1
\end{array}\right)
$$

5. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}-x_{3}=4 \\
-4 x_{1}-2 x_{2}+2 x_{3}=-6 \\
6 x_{1}+3 x_{2}-3 x_{3}=12
\end{array}\right.
$$

6. Find conditions on a, b such that the following system has no solutions, infinitely many, and a unique solution.

$$
\left\{\begin{array}{l}
x+a y=2 \\
4 x+8 y=b
\end{array}\right.
$$

7. Find $\left(\begin{array}{lll}1 & 3 & 1 \\ 0 & 1 & 1 \\ 2 & 5 & 2\end{array}\right)^{-1}$.
8. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}-6 x_{3}=5 \\
2 x_{1}+4 x_{2}+12 x_{3}=-6 \\
x_{1}-4 x_{2}-12 x_{3}=9
\end{array}\right.
$$

9. Come up with an example of a consistent system of equations with 3 equations and 2 variables. Give an example of an inconsistent system of linear equations with 2 equations and 3 variables.
10. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
z-3 y=-6 \\
x-2 y-2 z=-14 \\
4 y-x-3 z=5
\end{array}\right.
$$

